Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
ACS Appl Bio Mater ; 5(2): 483-491, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: covidwho-1805546

RESUMO

Interleukin-mediated deep cytokine storm, an aggressive inflammatory response to SARS-CoV-2 virus infection in COVID-19 patients, is correlated directly with lung injury, multi-organ failure, and poor prognosis of severe COVID-19 patients. Curcumin (CUR), a phenolic antioxidant compound obtained from turmeric (Curcuma longa L.), is well-known for its strong anti-inflammatory activity. However, its in vivo efficacy is constrained due to poor bioavailability. Herein, we report that CUR-encapsulated polysaccharide nanoparticles (CUR-PS-NPs) potently inhibit the release of cytokines, chemokines, and growth factors associated with damage of SARS-CoV-2 spike protein (CoV2-SP)-stimulated liver Huh7.5 and lung A549 epithelial cells. Treatment with CUR-PS-NPs effectively attenuated the interaction of ACE2 and CoV2-SP. The effects of CUR-PS-NPs were linked to reduced NF-κB/MAPK signaling which in turn decreased CoV2-SP-mediated phosphorylation of p38 MAPK, p42/44 MAPK, and p65/NF-κB as well as nuclear p65/NF-κB expression. The findings of the study strongly indicate that organic NPs of CUR can be used to control hyper-inflammatory responses and prevent lung and liver injuries associated with CoV2-SP-mediated cytokine storm.


Assuntos
Anti-Inflamatórios/farmacologia , Curcumina/farmacologia , Síndrome da Liberação de Citocina/prevenção & controle , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Anti-Inflamatórios/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/biossíntese , Curcumina/química , Curcumina/farmacocinética , Citocinas/biossíntese , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Fosforilação , Glicoproteína da Espícula de Coronavírus/fisiologia
2.
Mol Neurobiol ; 59(3): 1850-1861, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1712348

RESUMO

SARS-CoV-2 infects cells via its spike protein binding to its surface receptor on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evidence indicates that many patients develop a chronic condition characterized by fatigue and neuropsychiatric symptoms, termed long-COVID. Most of the vaccines produced so far for COVID-19 direct mammalian cells via either mRNA or an adenovirus vector to express the spike protein, or administer recombinant spike protein, which is recognized by the immune system leading to the production of neutralizing antibodies. Recent publications provide new findings that may help decipher the pathogenesis of long-COVID. One paper reported perivascular inflammation in brains of deceased patients with COVID-19, while others showed that the spike protein could damage the endothelium in an animal model, that it could disrupt an in vitro model of the blood-brain barrier (BBB), and that it can cross the BBB resulting in perivascular inflammation. Moreover, the spike protein appears to share antigenic epitopes with human molecular chaperons resulting in autoimmunity and can activate toll-like receptors (TLRs), leading to release of inflammatory cytokines. Moreover, some antibodies produced against the spike protein may not be neutralizing, but may change its conformation rendering it more likely to bind to its receptor. As a result, one wonders whether the spike protein entering the brain or being expressed by brain cells could activate microglia, alone or together with inflammatory cytokines, since protective antibodies could not cross the BBB, leading to neuro-inflammation and contributing to long-COVID. Hence, there is urgent need to better understand the neurotoxic effects of the spike protein and to consider possible interventions to mitigate spike protein-related detrimental effects to the brain, possibly via use of small natural molecules, especially the flavonoids luteolin and quercetin.


Assuntos
COVID-19/complicações , Glicoproteína da Espícula de Coronavírus/fisiologia , COVID-19/etiologia , COVID-19/virologia , Humanos , Estudos Prospectivos , Síndrome Pós-COVID-19 Aguda
3.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1650788

RESUMO

The entry of the SARS-CoV-2, a causative agent of COVID-19, into human host cells is mediated by the SARS-CoV-2 spike (S) glycoprotein, which critically depends on the formation of complexes involving the spike protein receptor-binding domain (RBD) and the human cellular membrane receptor angiotensin-converting enzyme 2 (hACE2). Using classical site density functional theory (SDFT) and structural bioinformatics methods, we investigate binding and conformational properties of these complexes and study the overlooked role of water-mediated interactions. Analysis of the three-dimensional reference interaction site model (3DRISM) of SDFT indicates that water mediated interactions in the form of additional water bridges strongly increases the binding between SARS-CoV-2 spike protein and hACE2 compared to SARS-CoV-1-hACE2 complex. By analyzing structures of SARS-CoV-2 and SARS-CoV-1, we find that the homotrimer SARS-CoV-2 S receptor-binding domain (RBD) has expanded in size, indicating large conformational change relative to SARS-CoV-1 S protein. Protomer with the up-conformational form of RBD, which binds with hACE2, exhibits stronger intermolecular interactions at the RBD-ACE2 interface, with differential distributions and the inclusion of specific H-bonds in the CoV-2 complex. Further interface analysis has shown that interfacial water promotes and stabilizes the formation of CoV-2/hACE2 complex. This interaction causes a significant structural rigidification of the spike protein, favoring proteolytic processing of the S protein for the fusion of the viral and cellular membrane. Moreover, conformational dynamics simulations of RBD motions in SARS-CoV-2 and SARS-CoV-1 point to the role in modification of the RBD dynamics and their impact on infectivity.


Assuntos
Enzima de Conversão de Angiotensina 2/ultraestrutura , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/fisiopatologia , Biologia Computacional/métodos , Teoria da Densidade Funcional , Humanos , Modelos Teóricos , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/fisiologia , Relação Estrutura-Atividade
4.
Viral Immunol ; 34(3): 165-173, 2021 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1569564

RESUMO

The current pandemic is caused by the coronavirus disease 2019 (COVID-19), which is, in turn, induced by a novel coronavirus (SARS-CoV-2) that triggers an acute respiratory disease. In recent years, the emergence of SARS-CoV-2 is the third highly pathogenic event and large-scale epidemic affecting the human population. It follows the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. This novel SARS-CoV-2 employs the angiotensin-converting enzyme 2 (ACE2) receptor, like SARS-CoV, and spreads principally in the respiratory tract. The viral spike (S) protein of coronaviruses facilities the attachment to the cellular receptor, entrance, and membrane fusion. The S protein is a glycoprotein and is critical to elicit an immune response. Glycosylation is a biologically significant post-translational modification in virus surface proteins. These glycans play important roles in the viral life cycle, structure, immune evasion, and cell infection. However, it is necessary to search for new information about viral behavior and immunological host's response after SARS-CoV-2 infection. The present review discusses the implications of the CoV-2 S protein glycosylation in the SARS-CoV-2/ACE2 interaction and the immunological response. Elucidation of the glycan repertoire on the spike protein can propel research for the development of an appropriate vaccine.


Assuntos
Enzima de Conversão de Angiotensina 2/fisiologia , COVID-19/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Glicosilação , Humanos , SARS-CoV-2/química , SARS-CoV-2/genética
5.
Nat Methods ; 18(12): 1477-1488, 2021 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1541247

RESUMO

Emergence of new viral agents is driven by evolution of interactions between viral proteins and host targets. For instance, increased infectivity of SARS-CoV-2 compared to SARS-CoV-1 arose in part through rapid evolution along the interface between the spike protein and its human receptor ACE2, leading to increased binding affinity. To facilitate broader exploration of how pathogen-host interactions might impact transmission and virulence in the ongoing COVID-19 pandemic, we performed state-of-the-art interface prediction followed by molecular docking to construct a three-dimensional structural interactome between SARS-CoV-2 and human. We additionally carried out downstream meta-analyses to investigate enrichment of sequence divergence between SARS-CoV-1 and SARS-CoV-2 or human population variants along viral-human protein-interaction interfaces, predict changes in binding affinity by these mutations/variants and further prioritize drug repurposing candidates predicted to competitively bind human targets. We believe this resource ( http://3D-SARS2.yulab.org ) will aid in development and testing of informed hypotheses for SARS-CoV-2 etiology and treatments.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Ligação Viral , Evolução Biológica , COVID-19/imunologia , Variação Genética , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/fisiologia
6.
Sci Rep ; 11(1): 22860, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1532106

RESUMO

The worse outcome of COVID-19 in people with diabetes mellitus could be related to the non-enzymatic glycation of human ACE2, leading to a more susceptible interaction with virus Spike protein. We aimed to evaluate, through a computational approach, the interaction between human ACE2 receptor and SARS-CoV-2 Spike protein under different conditions of hyperglycemic environment. A computational analysis was performed, based on the X-ray crystallographic structure of the Spike Receptor-Binding Domain (RBD)-ACE2 system. The possible scenarios of lysine aminoacid residues on surface transformed by glycation were considered: (1) on ACE2 receptor; (2) on Spike protein; (3) on both ACE2 receptor and Spike protein. In comparison to the native condition, the number of polar bonds (comprising both hydrogen bonds and salt bridges) in the poses considered are 10, 6, 6, and 4 for the states ACE2/Spike both native, ACE2 native/Spike glycated, ACE2 glycated/Spike native, ACE2/Spike both glycated, respectively. The analysis highlighted also how the number of non-polar contacts (in this case, van der Waals and aromatic interactions) significantly decreases when the lysine aminoacid residues undergo glycation. Following non-enzymatic glycation, the number of interactions between human ACE2 receptor and SARS-CoV-2 Spike protein is decreased in comparison to the unmodified model. The reduced affinity of the Spike protein for ACE2 receptor in case of non-enzymatic glycation may shift the virus to multiple alternative entry routes.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Hiperglicemia/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/fisiologia , COVID-19/metabolismo , COVID-19/patologia , Biologia Computacional/métodos , Simulação por Computador , Humanos , Hiperglicemia/imunologia , Simulação de Dinâmica Molecular , Ligação Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/fisiologia
7.
PLoS Comput Biol ; 17(11): e1009560, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1523396

RESUMO

Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively.


Assuntos
COVID-19/genética , COVID-19/virologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , SARS-CoV-2/genética , Adaptação Fisiológica/genética , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , Antígenos CD13/genética , Antígenos CD13/fisiologia , Resfriado Comum/genética , Resfriado Comum/virologia , Biologia Computacional , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/fisiologia , Evolução Molecular , Genômica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Especificidade de Hospedeiro/genética , Especificidade de Hospedeiro/fisiologia , Humanos , Mamíferos/genética , Mamíferos/virologia , Filogenia , Domínios e Motivos de Interação entre Proteínas/genética , Receptores Virais/genética , Receptores Virais/fisiologia , SARS-CoV-2/fisiologia , Seleção Genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Internalização do Vírus
8.
Viruses ; 13(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1502528

RESUMO

Men are disproportionately affected by the coronavirus disease-2019 (COVID-19), and face higher odds of severe illness and death compared to women. The vascular effects of androgen signaling and inflammatory cytokines in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated endothelial injury are not defined. We determined the effects of SARS-CoV-2 spike protein-mediated endothelial injury under conditions of exposure to androgen dihydrotestosterone (DHT) and tumor necrosis factor-a (TNF-α) and tested potentially therapeutic effects of mineralocorticoid receptor antagonism by spironolactone. Circulating endothelial injury markers VCAM-1 and E-selectin were measured in men and women diagnosed with COVID-19. Exposure of endothelial cells (ECs) in vitro to DHT exacerbated spike protein S1-mediated endothelial injury transcripts for the cell adhesion molecules E-selectin, VCAM-1 and ICAM-1 and anti-fibrinolytic PAI-1 (p < 0.05), and increased THP-1 monocyte adhesion to ECs (p = 0.032). Spironolactone dramatically reduced DHT+S1-induced endothelial activation. TNF-α exacerbated S1-induced EC activation, which was abrogated by pretreatment with spironolactone. Analysis from patients hospitalized with COVID-19 showed concordant higher circulating VCAM-1 and E-Selectin levels in men, compared to women. A beneficial effect of the FDA-approved drug spironolactone was observed on endothelial cells in vitro, supporting a rationale for further evaluation of mineralocorticoid antagonism as an adjunct treatment in COVID-19.


Assuntos
COVID-19/patologia , Di-Hidrotestosterona/farmacologia , Endotélio Vascular/patologia , Inflamação , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Espironolactona/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , COVID-19/fisiopatologia , COVID-19/virologia , Moléculas de Adesão Celular/sangue , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Humanos , Masculino , Caracteres Sexuais , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/fisiologia , Valsartana/farmacologia
9.
Science ; 374(6573): 1353-1360, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1483980

RESUMO

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report the structure, function, and antigenicity of its full-length spike (S) trimer as well as those of the Gamma and Kappa variants, and compare their characteristics with the G614, Alpha, and Beta variants. Delta S can fuse membranes more efficiently at low levels of cellular receptor angiotensin converting enzyme 2 (ACE2), and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility. Each variant shows different rearrangement of the antigenic surface of the amino-terminal domain of the S protein but only makes produces changes in the receptor binding domain (RBD), making the RBD a better target for therapeutic antibodies.


Assuntos
Evasão da Resposta Imune , Fusão de Membrana , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Antígenos Virais/imunologia , Linhagem Celular , Epitopos/imunologia , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Receptores de Coronavírus/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia
10.
Viruses ; 13(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: covidwho-1444331

RESUMO

Both the SARS-CoV-2 pandemic and emergence of variants of concern have highlighted the need for functional antibody assays to monitor the humoral response over time. Antibodies directed against the spike (S) protein of SARS-CoV-2 are an important component of the neutralizing antibody response. In this work, we report that in a subset of patients-despite a decline in total S-specific antibodies-neutralizing antibody titers remain at a similar level for an average of 98 days in longitudinal sampling of a cohort of 59 Hispanic/Latino patients exposed to SARS-CoV-2. Our data suggest that 100% of seroconverting patients make detectable neutralizing antibody responses which can be quantified by a surrogate viral neutralization test. Examination of sera from ten out of the 59 subjects which received mRNA-based vaccination revealed that both IgG titers and neutralizing activity of sera were higher after vaccination compared to a cohort of 21 SARS-CoV-2 naïve subjects. One dose was sufficient for the induction of a neutralizing antibody, but two doses were necessary to reach 100% surrogate virus neutralization in subjects irrespective of previous SARS-CoV-2 natural infection status. Like the pattern observed after natural infection, the total anti-S antibodies titers declined after the second vaccine dose; however, neutralizing activity remained relatively constant for more than 80 days after the first vaccine dose. Furthermore, our data indicates that-compared with mRNA vaccination-natural infection induces a more robust humoral immune response in unexposed subjects. This work is an important contribution to understanding the natural immune response to the novel coronavirus in a population severely impacted by SARS-CoV-2. Furthermore, by comparing the dynamics of the immune response after the natural infection vs. the vaccination, these findings suggest that functional neutralizing antibody tests are more relevant indicators than the presence or absence of binding antibodies.


Assuntos
Imunidade Humoral/fisiologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Adulto , Idoso , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/fisiopatologia , Vacinas contra COVID-19/imunologia , Feminino , Seguimentos , Humanos , Imunidade Humoral/genética , Imunidade Humoral/imunologia , Masculino , Pessoa de Meia-Idade , Ligação Proteica/genética , Domínios Proteicos/genética , Porto Rico/epidemiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
11.
Curr Opin Virol ; 50: 173-182, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1415336

RESUMO

The COVID-19 (coronavirus disease 2019) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to loss of human life in millions and devastating socio-economic consequences worldwide. The disease has created urgent needs for intervention strategies to control the crisis and meeting these needs requires a deep understanding of the structure-function relationships of viral proteins and relevant host factors. The trimeric spike (S) protein of the virus decorates the viral surface and is an important target for development of diagnostics, therapeutics and vaccines. Rapid progress in the structural biology of SARS-CoV-2 S protein has been made since the early stage of the pandemic, advancing our knowledge on the viral entry process considerably. In this review, we summarize our latest understanding of the structure of the SARS-CoV-2 S protein and discuss the implications for vaccines and therapeutics.


Assuntos
Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , Vacinas contra COVID-19/imunologia , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/fisiologia
13.
Int J Biol Sci ; 17(13): 3305-3319, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1372133

RESUMO

An inflammatory cytokine storm is considered an important cause of death in severely and critically ill COVID-19 patients, however, the relationship between the SARS-CoV-2 spike (S) protein and the host's inflammatory cytokine storm is not clear. Here, the qPCR results indicated that S protein induced a significantly elevated expression of multiple inflammatory factor mRNAs in peripheral blood mononuclear cells (PBMCs), whereas RS-5645 ((4-(thiophen-3-yl)-1-(p-tolyl)-1H-pyrrol-3-yl)(3,4,5-trimethoxyphenyl)methanone) attenuated the expression of the most inflammatory factor mRNAs. RS-5645 also significantly reduced the cellular ratios of CD45+/IFNγ+, CD3+/IFNγ+, CD11b+/IFNγ+, and CD56+/IFNγ+ in human PBMCs. In addition, RS-5645 effectively inhibited the activation of inflammatory cells and reduced inflammatory damage to lung tissue in mice. Sequencing results of 16S rRNA v3+v4 in mouse alveolar lavage fluid showed that there were 494 OTUs overlapping between the alveolar lavage fluid of mice that underwent S protein+ LPS-combined intervention (M) and RS-5645-treated mice (R), while R manifested 64 unique OTUs and M exhibited 610 unique OTUs. In the alveoli of group R mice, the relative abundances of microorganisms belonging to Porphyromonas, Rothia, Streptococcus, and Neisseria increased significantly, while the relative abundances of microorganisms belonging to Psychrobacter, Shimia, and Sporosarcina were significantly diminished. The results of KEGG analysis indicated that the alveolar microbiota of mice in the R group can increase translation and reduce the activity of amino acid metabolism pathways. COG analysis results indicated that the abundance of proteins involved in ribosomal structure and biogenesis related to metabolism was augmented in the alveolar microbiota of the mice in the R group, while the abundance of proteins involved in secondary metabolite biosynthesis was significantly reduced. Therefore, our research results showed that RS-5645 attenuated pulmonary inflammatory cell infiltration and the inflammatory storm induced by the S protein and LPS by modulating the pulmonary microbiota.


Assuntos
Anti-Inflamatórios/farmacologia , COVID-19/imunologia , Síndrome da Liberação de Citocina/prevenção & controle , Lipopolissacarídeos/farmacologia , Pulmão/microbiologia , Microbiota/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/fisiologia , Animais , Antígenos CD/imunologia , COVID-19/virologia , Síndrome da Liberação de Citocina/imunologia , Modelos Animais de Doenças , Humanos , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
14.
Arch Pharm (Weinheim) ; 354(11): e2100160, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1370365

RESUMO

Boswellic acids (BAs) have been shown to possess antiviral activity. Using bioinformatic methods, it was tested whether or not acetyl-11-keto-ß-boswellic acid (AKBA), 11-keto-ß-boswellic acid (KBA), ß-boswellic acid (BBA), and the phosphorylated active metabolite of Remdesivir® (RGS-P3) bind to functional proteins of SARS-CoV-2, that is, the replicase polyprotein P0DTD1, the spike glycoprotein P0DTC2, and the nucleoprotein P0DTC9. Using P0DTD1, AKBA and KBA showed micromolar binding affinity to the RNA-dependent RNA polymerase (RdRp) and to the main proteinase complex Mpro . Phosphorylated BAs even bond in the nanomolar range. Due to their positive and negative charges, BAs and RGS-P3 bond to corresponding negative and positive areas of the protein. BAs and RGS-P3 docked in the tunnel-like cavity of RdRp. BAs also docked into the elongated surface rim of viral Mpro . In both cases, binding occurred with active site amino acids in the lower micromolecular to upper nanomolar range. KBA, BBA, and RGS-P3 also bond to P0DTC2 and P0DTC9. The binding energies for BAs were in the range of -5.8 to -6.3 kcal/mol. RGS-P3 and BAs occluded the centrally located pore of the donut-like protein structure of P0DTC9 and, in the case of P0DTC2, RGS-P3 and BAs impacted the double-wing-like protein structure. The data of this bioinformatics study clearly show that BAs bind to three functional proteins of the SARS-CoV-2 virus responsible for adhesion and replication, as does RGS-P3, a drug on the market to treat this disease. The binding effectiveness of BAs can be increased through phosphate esterification. Whether or not BAs are druggable against the SARS-CoV-2 disease remains to be established.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/fisiologia , Triterpenos/farmacologia , Proteínas Virais/fisiologia , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/farmacologia , Sítios de Ligação/fisiologia , Boswellia , COVID-19/virologia , Biologia Computacional/métodos , Humanos , Simulação de Acoplamento Molecular , Nucleoproteínas/metabolismo , Poliproteínas/metabolismo , Pró-Fármacos/farmacologia , Ligação Proteica/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Relação Estrutura-Atividade
15.
J Med Virol ; 93(9): 5638-5643, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1363682

RESUMO

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged, posing a renewed threat to coronavirus disease 2019 containment and to vaccine and drug efficacy. In this study, we analyzed more than 1,000,000 SARS-CoV-2 genomic sequences deposited up to April 27, 2021, on the GISAID public repository, and identified a novel T478K mutation located on the SARS-CoV-2 Spike protein. The mutation is structurally located in the region of interaction with human receptor ACE2 and was detected in 11,435 distinct cases. We show that T478K has appeared and risen in frequency since January 2021, predominantly in Mexico and the United States, but we could also detect it in several European countries.


Assuntos
COVID-19/virologia , Genoma Viral , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/fisiologia , Europa (Continente) , Humanos , México , Mutação , Filogenia , Glicoproteína da Espícula de Coronavírus/genética , Estados Unidos
16.
Virology ; 562: 142-148, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1331288

RESUMO

SARS-CoV, MERS-CoV, and potentially SARS-CoV-2 emerged as novel human coronaviruses following cross-species transmission from animal hosts. Although the receptor binding characteristics of human coronaviruses are well documented, the role of carbohydrate binding in addition to recognition of proteinaceous receptors has not been fully explored. Using natural glycan microarray technology, we identified N-glycans in the human lung that are recognized by various human and animal coronaviruses. All viruses tested, including SARS-CoV-2, bound strongly to a range of phosphorylated, high mannose N-glycans and to a very specific set of sialylated structures. Examination of two linked strains, human CoV OC43 and bovine CoV Mebus, reveals shared binding to the sialic acid form Neu5Gc (not found in humans), supporting the evidence for cross-species transmission of the bovine strain. Our findings, revealing robust recognition of lung glycans, suggest that these receptors could play a role in the initial stages of coronavirus attachment and entry.


Assuntos
COVID-19/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Polissacarídeos/metabolismo , SARS-CoV-2/metabolismo , Animais , Bovinos , Humanos , Pulmão/metabolismo , Manose/química , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Ácido N-Acetilneuramínico/química , Fosforilação , Análise Serial de Proteínas , Ligação Proteica , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/fisiologia
17.
PLoS Pathog ; 17(7): e1009715, 2021 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1315897

RESUMO

SARS-CoV and SARS-CoV-2 encode spike proteins that bind human ACE2 on the cell surface to enter target cells during infection. A small fraction of humans encode variants of ACE2, thus altering the biochemical properties at the protein interaction interface. These and other ACE2 coding mutants can reveal how the spike proteins of each virus may differentially engage the ACE2 protein surface during infection. We created an engineered HEK 293T cell line for facile stable transgenic modification, and expressed the major human ACE2 allele or 28 of its missense mutants, 24 of which are possible through single nucleotide changes from the human reference sequence. Infection with SARS-CoV or SARS-CoV-2 spike pseudotyped lentiviruses revealed that high ACE2 cell-surface expression could mask the effects of impaired binding during infection. Drastically reducing ACE2 cell surface expression revealed a range of infection efficiencies across the panel of mutants. Our infection results revealed a non-linear relationship between soluble SARS-CoV-2 RBD binding to ACE2 and pseudovirus infection, supporting a major role for binding avidity during entry. While ACE2 mutants D355N, R357A, and R357T abrogated entry by both SARS-CoV and SARS-CoV-2 spike proteins, the Y41A mutant inhibited SARS-CoV entry much more than SARS-CoV-2, suggesting differential utilization of the ACE2 side-chains within the largely overlapping interaction surfaces utilized by the two CoV spike proteins. These effects correlated well with cytopathic effects observed during SARS-CoV-2 replication in ACE2-mutant cells. The panel of ACE2 mutants also revealed altered ACE2 surface dependencies by the N501Y spike variant, including a near-complete utilization of the K353D ACE2 variant, despite decreased infection mediated by the parental SARS-CoV-2 spike. Our results clarify the relationship between ACE2 abundance, binding, and infection, for various SARS-like coronavirus spike proteins and their mutants, and inform our understanding for how changes to ACE2 sequence may correspond with different susceptibilities to infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/etiologia , SARS-CoV-2/fisiologia , Síndrome Respiratória Aguda Grave/etiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/virologia , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/virologia
18.
PLoS Pathog ; 17(7): e1009706, 2021 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1305581

RESUMO

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Internalização do Vírus/efeitos dos fármacos , Cloreto de Amônio/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Cloroquina/farmacologia , Clatrina/metabolismo , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidroxicloroquina/administração & dosagem , Macrolídeos/farmacologia , Niclosamida/administração & dosagem , Niclosamida/farmacologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/fisiologia , Células Vero
19.
Blood ; 138(4): 344-349, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: covidwho-1255893

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with the hypercoagulable state. Tissue factor (TF) is the primary cellular initiator of coagulation. Most of the TF expressed on cell surfaces remains cryptic. Sphingomyelin (SM) is responsible for maintaining TF in the encrypted state, and hydrolysis of SM by acid sphingomyelinase (ASMase) increases TF activity. ASMase was shown to play a role in virus infection biology. In the present study, we investigated the role of ASMase in SARS-CoV-2 infection-induced TF procoagulant activity. Infection of human monocyte-derived macrophages (MDMs) with SARS-CoV-2 spike protein pseudovirus (SARS-CoV-2-SP-PV) markedly increased TF procoagulant activity at the cell surface and released TF+ extracellular vesicles. The pseudovirus infection did not increase either TF protein expression or phosphatidylserine externalization. SARS-CoV-2-SP-PV infection induced the translocation of ASMase to the outer leaflet of the plasma membrane, which led to the hydrolysis of SM in the membrane. Pharmacologic inhibitors or genetic silencing of ASMase attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Inhibition of the SARS-CoV-2 receptor, angiotensin-converting enzyme-2, attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Overall, our data suggest that SARS-CoV-2 infection activates the coagulation by decrypting TF through activation of ASMase. Our data suggest that the US Food and Drug Administration-approved functional inhibitors of ASMase may help treat hypercoagulability in patients with COVID-19.


Assuntos
COVID-19/sangue , Macrófagos/virologia , Proteínas de Membrana/fisiologia , SARS-CoV-2 , Esfingomielina Fosfodiesterase/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Trombofilia/etiologia , Tromboplastina/fisiologia , Enzima de Conversão de Angiotensina 2/fisiologia , COVID-19/complicações , Micropartículas Derivadas de Células , Ativação Enzimática , Humanos , Hidrólise , Macrófagos/enzimologia , Terapia de Alvo Molecular , Plasmídeos , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Virais/fisiologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielinas/fisiologia , Trombofilia/sangue , Trombofilia/tratamento farmacológico , Trombofilia/enzimologia
20.
Mol Neurobiol ; 58(9): 4535-4563, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-1252224

RESUMO

Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.


Assuntos
Vacinas contra COVID-19 , COVID-19/complicações , Inflamação/etiologia , Transtornos do Neurodesenvolvimento/etiologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , Antivirais/uso terapêutico , COVID-19/fisiopatologia , COVID-19/prevenção & controle , COVID-19/terapia , Vacinas contra COVID-19/efeitos adversos , Linhagem Celular , Comorbidade , Síndrome da Liberação de Citocina/etiologia , Feminino , Hormese , Humanos , Imunização Passiva , Transmissão Vertical de Doenças Infecciosas , Camundongos , Modelos Neurológicos , Vírus da Hepatite Murina/patogenicidade , Sistema Nervoso/virologia , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/etiologia , Especificidade de Órgãos , Organoides , Gravidez , Complicações Infecciosas na Gravidez/virologia , Receptores Virais/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Serina Endopeptidases/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Soroterapia para COVID-19 , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA